Secure Timeout System
NXP S32K3X8EVB

Beamer for the CAOS Project

Andrea Botticella
Fabrizio Emanuel
Elia Innocenti

Renato Mignone
Simone Romano

February 5, 2025

1/34

y M. _ Lm * Politecnico

Y Wmm%‘u di Torino

1859

Table of Contents

1 Project Overview

» Project Overview

2/34

Project Overview

1 Project Overview

e The assignment consists of FOUR parts:
— Part 1: QEMU board emulation

o Generating a custom QEMU version to emulate the NXP S32K3X8EVB board.
o Ensuring that QEMU emulates the proper CPU, memory map, and the peripherals assigned.

— Part 2: FreeRTOS porting
o Ensuring that FreeRTOS runs on the emulated board.
— Part 3: Writing a simple application
o Writing a simple application implementing different tasks to test the setup.

3/34

Project Overview
1 Project Overview

e The assignment consists of FOUR parts:
— Part 4: Documentation and presentation

o Creating a tutorial to run and test your code.
o Documentation of the code.

e What we've actually done:
— Secure Timeout System application on the NXP S32K3X8EVB board using FreeRTOS,
emulated with QEMU.
— Refer to the dedicated markdown files in the repository: README . md and GUIDE.md.

These files contain all the implementation details and the tutorial to replicate the
project.

4/34

Table of Contents
2 QEMU Board Emulation

» QEMU Board Emulation

5/34

Custom QEMU Version

2 QEMU Board Emulation

e Emulate the NXP S32K3X8EVB board, which is not
natively supported by QEMU.

e Ensure proper emulation of the CPU (ARM Cortex-M7),
memory map, and peripherals.

6/34

7/34

Technical Details
2 QEMU Board Emulation

Added a new machine model to QEMU for the $32K3X8EVB board, creating a
dedicated . c file.

Specifically took the $32K358EVB board as a reference for implementation.

Implemented custom initialization routines for memory and peripherals based on its
architecture.

The S32K358EVB board specifications we implemented:
— ARM Cortex-M7 CPU.
— ~8MB Flash memory, 768KB SRAM, 256KB DTCM, and 128KB ITCM.
— NVIC with 256 IRQs and 4 priority bits.
— Multiple peripherals: 16 LPUART, 3 PIT timers, 16 MPU regions.
— System clock running at 240MHz.

Memory Regions Initialization
2 QEMU Board Emulation

¢ Flash Memory: Configured multiple blocks:
— Blocko: Base Address: 0x00400000, Size: 2 MB
— Block1: Base Address: 0x00600000, Size: 2 MB
— Block2: Base Address: 0xo0800000, Size: 2 MB
— Block3: Base Address: 0OXOOAO0000, Size: 2 MB
— Block4: Base Address: 0x10000000, Size: 128 KB
— Utest: Base Address: 0x18000000, Size: 8 KB

e SRAM Memory:
— Blocko: Base Address: 0x20400000, Size: 256 KB
— Block1: Base Address: 0x20440000, Size: 256 KB
— Block2: Base Address: 0x20480000, Size: 256 KB

¢ DTCM and ITCM Memory:
— DTCMo: Base Address: 0x20000000, Size: 128 KB
— ITCMo: Base Address: 0x00000000, Size: 64 KB

8/34

Peripherals and Interrupts Setup
2 QEMU Board Emulation

e NVIC (Nested Vectored Interrupt Controller):
— Configured with 4 priority bits and 256 IRQs:
o 1Initial Stack Pointer value (-16)
o 15 System Exceptions
o 240 External Interrupts
e LPUART (Low Power UART):
— Base Address: 0x4006A000
— The board has 16 LPUART instances.
They are mapped starting from the UART base address.
— Connected to NVIC and clocked by ATPS_PLAT_CLK and ATPS_SLOW_CLK.
e PIT Timers (Periodic Interrupt Timer):
— Timer1: Base Address: 0x40037000
— Timer2: Base Address: 0x40038000
— Timer3: Base Address: 0x40039000

9/34

System Clocks and Interrupts
2 QEMU Board Emulation

e MPU: 16 regions.

e System Clock:
— Primary System Clock: 240MHz frequency, 4.16ns period.
— AIPS Platform Clock: 80MHz
— AIPS Slow Clock: 40MHz
— Reference Clock: 1IMHz
¢ Interrupt Handling:
— Configured NVIC to handle exceptions and IRQs.
— NVIC is connected to system and reference clocks.
— Interrupt sources include timers, UARTs, and peripheral events.

10/34

Firmware Loading
2 QEMU Board Emulation

e Function: armv7m_load_kernel
e Parameters:

— cpuw: The ARM CPU instance.
— ms->kernel_filename: Firmware file inside the machine state.
— flash: The memory region representing the flash memory.

e Functionality:
— Reads the firmware file and loads its contents into the specified flash memory region.

1/34

Class initialization
2 QEMU Board Emulation

e s32k3x8_class_init:

static void s32k3x8_class_init (ObjectClass *oc, void xdata) {
MachineClass *mc = MACHINE_CLASS (oc);
mc->name = g_strdup("s32k3x8evb");
mc->desc = "NXP S32K3X8 EVB (Cortex-M7)";
mc->init = s32k3x8_init;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m7");
mc->default_cpus = 1;
mc->min_cpus = mc->default_cpus;
mc->max_cpus = mc->default_cpus;
mc->no_floppy = 1;
mc->no_cdrom = 1;
mc->no_parallel = 1;

12/34

Table of Contents
3 FreeRTOS Porting

» FreeRTOS Porting

13/34

Overview
3 FreeRTOS Porting

e To test the FreeRTOS Porting on QEMU, a very
simple application was created.

e The application runs a basic task that prints a
message every second.

o |f everything works correctly, it means that the
FreeRTOS Porting has been successfully
implemented.

14/34

EFRTOS

Setting Up FreeRTOS

3 FreeRTOS Porting

1. Cloning the FreeRTOS repository.

2. Creating the directory structure: App/ and App/Peripherals/.
3. Creating and implementing the following files in the App/ directory:

15/34

s32_startup.c, s32_linker.1d

FreeRTOSConfig.h

Makefile

main.c

Peripherals/: uart.c, printf-stdarg. c with their respective header files

Running FreeRTOS on QEMU

3 FreeRTOS Porting

e main.c:
xTaskCreate (vTaskl, "Taskl", configMINIMAL_STACK_SIZE, NULL,
mainTASK_PRIORITY, NULL);
void vTaskl(void *pvParameters)
{
(void) pvParameters;
for (;3;)
{
printf ("Taskl is running...\n");
vTaskDelay (1000) ;
¥
}

16/34

Running FreeRTOS on QEMU

3 FreeRTOS Porting

¢ Run the Test:
— cd App && make run

T

running ...
running ...

Figure: FreeRTOS Porting Test.

17/34

Table of Contents
4 Test Application

» Test Application

18/34

Secure Timeout System Application
4 Test Application

e The application is a simple implementation of a
Secure Timeout System.

e |t consists of multiple tasks that simulate events,
monitor activities, and handle alerts.

e Hardware timers are used to generate periodic
interrupts for activity detection.

19/34

Task Implementation
4 Test Application

e Event Task:

— Periodically generates events that can be either user activities or suspicious activities.
— Uses a pseudo-random number generator to decide the type of event.
— Logs the generated event and updates the respective counters.

EVENT SIMULATOR] New Cycle St
Count: 1

EVENT SIMULATOR]

EVENT SIMULATOR] Generat L ity t Count: 1

Figure: Generation of a user activity and a suspicious activity.

20/34

Hardware Timer Initialization
4 Test Application

e Timer o:

— Configured to generate periodic interrupts.
— Interrupt handler checks for user activities and sets the user activity detection flag.

e Timer 1:

— Configured to generate periodic interrupts.
— Interrupt handler checks for suspicious activities and sets the suspicious activity
detection flag.

21/34

Task Implementation
4 Test Application

e Monitor Task:

Checks for user activity detection.
Logs the status of user activity.
Resets the user activity detection flag after logging.

e Alert Task:

22/34

Checks for suspicious activity detection.

Logs the status of the system security.

Initiates security protocols if suspicious activity is detected.
Resets the suspicious activity detection flag after logging.

Implementation Details
4 Test Application

e Global Variables:
— Four main flags:

o userActivity, userActivityDetection,
suspiciousActivity, suspiciousActivityDetection

e Task Priorities:

— Event Task has the highest priority to ensure timely event generation.
— Monitor Task and Alert Task have lower priorities.

e Timer Frequency:

— Timer 0 and Timer 1 are configured to generate periodic interrupts
at a frequency of 2 Hz.

23/34

Implementation Details
4 Test Application

e Task Priorities:

// filepath: /App/SecureTimeoutSystem/secure_timeout_system.c
#define MONITOR_TASK_PRIORITY (tskIDLE_PRIORITY + 2)
#define ALERT_TASK_PRIORITY (tskIDLE_PRIORITY + 3)
#define EVENT_TASK_PRIORITY (tskIDLE_PRIORITY + 4)

e Timer Frequency:

// filepath: /App/Peripherals/IntTimer.c
#define tmrTIMER_O_FREQUENCY (2UL)
#define tmrTIMER_1_FREQUENCY (2UL)

24/34

Run Example
4 Test Application

NT SIMULATOR]

NT SIMULATOR] Generated: Count: 1
Timer 0 Interrupt: looking for user activ

Time Tooking for

CURITY ALERT] Suspicious : ALARM
[RITY ALERT] Initiating security

[USER i

IDLE
Time:

Looking for
Tooking for
Tooking for
Tooking for

RITY ALERT] Suspicious

RITY ALERT] Ini

[USER MONITOR] No activit

Timer @ Interrupt: looking for

Timer 1 Interrupt: looking for

Timer 0 Interrupt: looking for

imer 1 Interrupt: looking for

CURITY ALERT] Suspicious

suspicious
tivities

ALARM
MONITOR] No activi

IDLE
Tooking for

RITY ALERT] Suspicious ALARM
CURITY ALERT] Initi g cur:
MONITOR] No tivit
Looking for u
Looking for
Looking for
looking for

IDLE

RITY ALERT]
CURITY ALERT]
MONTTOR] No
er 0 Interrupt: Llooking for

detected
protocols

25/34

Table of Contents
5 Memory Protection Unit (MPU) Implementation

» Memory Protection Unit (MPU) Implementation

26/34

Overview
5 Memory Protection Unit (MPU) Implementation

e The MPU enhances security by restricting memory access based on region
configurations.
e The ARM Cortex-M7 processor supports up to 16 MPU regions.

e FreeRTOS provides built-in MPU support for ARM Cortex-M4, which can be
theoretically adapted for Cortex-M7.

— Errata 837070: Requires workarounds for Cortex-M7 ropo and rop1 revisions.

27/34

MPU Configuration

5 Memory Protection Unit (MPU) Implementation

s
o . . “UNPRIVILEGED
e Each MPU region is configured with: TASK

— Base address . ‘;:’J \

— Region size) = \

— Access permissions (privileged/unprivileged, g
read/write/execute)

e Enables separation of kernel and user-mode

tasks. KERNEL
SPACE*

28/34

Theoretical Steps for Implementation
5 Memory Protection Unit (MPU) Implementation

Define MPU Region Count in FreeRT0SConfig.h:

Set configENABLE_MPU to 1.

Set configTOTAL_MPU_REGIONS to 16.

Set configENABLE_ERRATA_837070_WORKAROUD to 1.

configMINIMAL _STACK_SIZE needs to be adjusted since the MPU requires memory
alignment.

Enable Errata Workaround: Apply fix for Cortex-M7 ropo and rop1 by modifying

port.c.

29/34

Integrate FreeRTOS Changes: Adapt ARM_CM4 MPU/port . c to support Cortex-M7.

MPU in QEMU

5 Memory Protection Unit (MPU) Implementation

¢ Device Tree (qtree)

— Used gtree to inspect the device tree of the board.
— Found two MPU regions, each containing 8 blocks.

e Script Execution
— Ran a script to determine how many MPU regions exist in a block.

AOEDSA)

ch

printf ("MPU

Figure: MPU Region Detection Script

30/34

MPU in QEMU

5 Memory Protection Unit (MPU) Implementation

e Result Analysis
— The script returned 0x00000800.
— Bit o (MPU Present Bit) =0

o Some Cortex-M chips use this bit to indicate MPU presence.
o For Cortex-M7 (S32K3 series), this bit is always o.

— Bits 15:8 (DREGION) = 8
o MPU supports 8 regions.

MPU TYPER: 0x00008800

Figure: MPU Detection Result

31/34

Table of Contents

6 Conclusion

» Conclusion

32/34

Conclusion

6 Conclusion

e The s32k3x8evb_board. c file plays a crucial role in the emulation of the NXP
S32K3X8EVB board within QEMU.

e |t provides the necessary functions to load firmware, initialize memory regions, set
up hardware components, and manage system clocks and interrupts.

e All the implementations and detailed information about the project are contained in
the repository.

e Repository link: https://baltig.polito.it/caos2024/group2.git

33/34

https://baltig.polito.it/caos2024/group2.git

Thank you for listening!
Any questions?

34/34

	Project Overview
	QEMU Board Emulation
	FreeRTOS Porting
	Test Application
	Memory Protection Unit (MPU) Implementation
	Conclusion

