
Secure Timeout System
NXP S32K3X8EVB
Beamer for the CAOS Project
Andrea Botticella

Fabrizio Emanuel

Elia Innocenti

Renato Mignone

Simone Romano

February 5, 2025

1/34



Table of Contents1 Project Overview

▶ Project Overview
▶ QEMU Board Emulation
▶ FreeRTOS Porting
▶ Test Application
▶Memory Protection Unit (MPU) Implementation
▶ Conclusion

2/34



Project Overview1 Project Overview

• The assignment consists of FOUR parts:— Part 1: QEMU board emulation
◦ Generating a custom QEMU version to emulate the NXP S32K3X8EVB board.
◦ Ensuring that QEMU emulates the proper CPU, memory map, and the peripherals assigned.— Part 2: FreeRTOS porting
◦ Ensuring that FreeRTOS runs on the emulated board.— Part 3: Writing a simple application
◦ Writing a simple application implementing different tasks to test the setup.

3/34



Project Overview1 Project Overview

• The assignment consists of FOUR parts:— Part 4: Documentation and presentation
◦ Creating a tutorial to run and test your code.
◦ Documentation of the code.

• What we’ve actually done:
— Secure Timeout System application on the NXP S32K3X8EVB board using FreeRTOS,emulated with QEMU.— Refer to the dedicated markdown files in the repository: README.md and GUIDE.md.These files contain all the implementation details and the tutorial to replicate theproject.

4/34



Table of Contents2 QEMU Board Emulation

▶ Project Overview
▶ QEMU Board Emulation
▶ FreeRTOS Porting
▶ Test Application
▶Memory Protection Unit (MPU) Implementation
▶ Conclusion

5/34



Custom QEMU Version2 QEMU Board Emulation

• Emulate the NXP S32K3X8EVB board, which is notnatively supported by QEMU.
• Ensure proper emulation of the CPU (ARM Cortex-M7),memory map, and peripherals.

6/34



Technical Details2 QEMU Board Emulation
• Added a new machine model to QEMU for the S32K3X8EVB board, creating adedicated .c file.
• Specifically took the S32K358EVB board as a reference for implementation.
• Implemented custom initialization routines for memory and peripherals based on itsarchitecture.
• The S32K358EVB board specifications we implemented:

— ARM Cortex-M7 CPU.— ∼8MB Flash memory, 768KB SRAM, 256KB DTCM, and 128KB ITCM.— NVIC with 256 IRQs and 4 priority bits.— Multiple peripherals: 16 LPUART, 3 PIT timers, 16 MPU regions.— System clock running at 240MHz.

7/34



Memory Regions Initialization2 QEMU Board Emulation
• Flash Memory: Configured multiple blocks:— Block0: Base Address: 0x00400000, Size: 2 MB— Block1: Base Address: 0x00600000, Size: 2 MB— Block2: Base Address: 0x00800000, Size: 2 MB— Block3: Base Address: 0x00A00000, Size: 2 MB— Block4: Base Address: 0x10000000, Size: 128 KB— Utest: Base Address: 0x18000000, Size: 8 KB• SRAMMemory:— Block0: Base Address: 0x20400000, Size: 256 KB— Block1: Base Address: 0x20440000, Size: 256 KB— Block2: Base Address: 0x20480000, Size: 256 KB• DTCM and ITCMMemory:— DTCM0: Base Address: 0x20000000, Size: 128 KB— ITCM0: Base Address: 0x00000000, Size: 64 KB

8/34



Peripherals and Interrupts Setup2 QEMU Board Emulation
• NVIC (Nested Vectored Interrupt Controller):— Configured with 4 priority bits and 256 IRQs:

◦ 1 Initial Stack Pointer value (-16)
◦ 15 System Exceptions
◦ 240 External Interrupts• LPUART (Low Power UART):

— Base Address: 0x4006A000— The board has 16 LPUART instances.They are mapped starting from the UART base address.— Connected to NVIC and clocked by AIPS PLAT CLK and AIPS SLOW CLK.• PIT Timers (Periodic Interrupt Timer):
— Timer1: Base Address: 0x40037000— Timer2: Base Address: 0x40038000— Timer3: Base Address: 0x40039000

9/34



System Clocks and Interrupts2 QEMU Board Emulation

• MPU: 16 regions.
• System Clock:

— Primary System Clock: 240MHz frequency, 4.16ns period.— AIPS Platform Clock: 80MHz— AIPS Slow Clock: 40MHz— Reference Clock: 1MHz
• Interrupt Handling:

— Configured NVIC to handle exceptions and IRQs.— NVIC is connected to system and reference clocks.— Interrupt sources include timers, UARTs, and peripheral events.

10/34



Firmware Loading2 QEMU Board Emulation

• Function: armv7m load kernel

• Parameters:
— cpu: The ARM CPU instance.— ms->kernel filename: Firmware file inside the machine state.— flash: The memory region representing the flash memory.

• Functionality:
— Reads the firmware file and loads its contents into the specified flash memory region.

11/34



Class initialization2 QEMU Board Emulation
• s32k3x8 class init:

static void s32k3x8_class_init(ObjectClass *oc, void *data) {

MachineClass *mc = MACHINE_CLASS(oc);

mc ->name = g_strdup("s32k3x8evb");

mc ->desc = "NXP S32K3X8 EVB (Cortex -M7)";

mc ->init = s32k3x8_init;

mc ->default_cpu_type = ARM_CPU_TYPE_NAME("cortex -m7");

mc ->default_cpus = 1;

mc ->min_cpus = mc ->default_cpus;

mc ->max_cpus = mc ->default_cpus;

mc ->no_floppy = 1;

mc ->no_cdrom = 1;

mc ->no_parallel = 1;

}

12/34



Table of Contents3 FreeRTOS Porting

▶ Project Overview
▶ QEMU Board Emulation
▶ FreeRTOS Porting
▶ Test Application
▶Memory Protection Unit (MPU) Implementation
▶ Conclusion

13/34



Overview3 FreeRTOS Porting

• To test the FreeRTOS Porting on QEMU, a verysimple application was created.
• The application runs a basic task that prints amessage every second.
• If everything works correctly, it means that the
FreeRTOS Porting has been successfullyimplemented.

14/34



Setting Up FreeRTOS3 FreeRTOS Porting

1. Cloning the FreeRTOS repository.
2. Creating the directory structure: App/ and App/Peripherals/.
3. Creating and implementing the following files in the App/ directory:

— s32 startup.c, s32 linker.ld— FreeRTOSConfig.h— Makefile— main.c— Peripherals/: uart.c, printf-stdarg.c with their respective header files

15/34



Running FreeRTOS on QEMU3 FreeRTOS Porting
• main.c:

xTaskCreate(vTask1 , "Task1", configMINIMAL_STACK_SIZE , NULL ,

mainTASK_PRIORITY , NULL);

void vTask1(void *pvParameters)

{

(void) pvParameters;

for (;;)

{

printf("Task1 is running ...\n");

vTaskDelay (1000);

}

}

16/34



Running FreeRTOS on QEMU3 FreeRTOS Porting

• Run the Test:
— cd App && make run

Figure: FreeRTOS Porting Test.

17/34



Table of Contents4 Test Application

▶ Project Overview
▶ QEMU Board Emulation
▶ FreeRTOS Porting
▶ Test Application
▶Memory Protection Unit (MPU) Implementation
▶ Conclusion

18/34



Secure Timeout System Application4 Test Application

• The application is a simple implementation of a
Secure Timeout System.

• It consists ofmultiple tasks that simulate events,monitor activities, and handle alerts.
• Hardware timers are used to generate periodic
interrupts for activity detection.

19/34



Task Implementation4 Test Application
• Event Task:

— Periodically generates events that can be either user activities or suspicious activities.— Uses a pseudo-random number generator to decide the type of event.— Logs the generated event and updates the respective counters.

Figure: Generation of a user activity and a suspicious activity.

20/34



Hardware Timer Initialization4 Test Application

• Timer 0:
— Configured to generate periodic interrupts.— Interrupt handler checks for user activities and sets the user activity detection flag.

• Timer 1:
— Configured to generate periodic interrupts.— Interrupt handler checks for suspicious activities and sets the suspicious activitydetection flag.

21/34



Task Implementation4 Test Application

• Monitor Task:
— Checks for user activity detection.— Logs the status of user activity.— Resets the user activity detection flag after logging.

• Alert Task:
— Checks for suspicious activity detection.— Logs the status of the system security.— Initiates security protocols if suspicious activity is detected.— Resets the suspicious activity detection flag after logging.

22/34



Implementation Details4 Test Application

• Global Variables:— Four main flags:
◦ userActivity, userActivityDetection,

suspiciousActivity, suspiciousActivityDetection
• Task Priorities:

— Event Task has the highest priority to ensure timely event generation.— Monitor Task and Alert Task have lower priorities.
• Timer Frequency:

— Timer 0 and Timer 1 are configured to generate periodic interruptsat a frequency of 2 Hz.

23/34



Implementation Details4 Test Application

• Task Priorities:

// filepath: /App/SecureTimeoutSystem/secure_timeout_system.c

#define MONITOR_TASK_PRIORITY (tskIDLE_PRIORITY + 2)

#define ALERT_TASK_PRIORITY (tskIDLE_PRIORITY + 3)

#define EVENT_TASK_PRIORITY (tskIDLE_PRIORITY + 4)

• Timer Frequency:

// filepath: /App/Peripherals/IntTimer.c

#define tmrTIMER_0_FREQUENCY (2UL)

#define tmrTIMER_1_FREQUENCY (2UL)

24/34



Run Example4 Test Application

25/34



Table of Contents5 Memory Protection Unit (MPU) Implementation

▶ Project Overview
▶ QEMU Board Emulation
▶ FreeRTOS Porting
▶ Test Application
▶Memory Protection Unit (MPU) Implementation
▶ Conclusion

26/34



Overview5 Memory Protection Unit (MPU) Implementation

• The MPU enhances security by restricting memory access based on regionconfigurations.
• The ARM Cortex-M7 processor supports up to 16 MPU regions.
• FreeRTOS provides built-in MPU support for ARM Cortex-M4, which can betheoretically adapted for Cortex-M7.

— Errata 837070: Requires workarounds for Cortex-M7 r0p0 and r0p1 revisions.

27/34



MPU Configuration5 Memory Protection Unit (MPU) Implementation

• Each MPU region is configured with:
— Base address— Region size— Access permissions (privileged/unprivileged,read/write/execute)

• Enables separation of kernel and user-modetasks.

28/34



Theoretical Steps for Implementation5 Memory Protection Unit (MPU) Implementation

• Define MPU Region Count in FreeRTOSConfig.h:
— Set configENABLE MPU to 1.— Set configTOTAL MPU REGIONS to 16.— Set configENABLE ERRATA 837070 WORKAROUD to 1.— configMINIMAL STACK SIZE needs to be adjusted since the MPU requires memoryalignment.

• Enable Errata Workaround: Apply fix for Cortex-M7 r0p0 and r0p1 by modifying
port.c.

• Integrate FreeRTOS Changes: Adapt ARM CM4 MPU/port.c to support Cortex-M7.

29/34



MPU in QEMU5 Memory Protection Unit (MPU) Implementation
• Device Tree (qtree)

— Used qtree to inspect the device tree of the board.— Found two MPU regions, each containing 8 blocks.
• Script Execution

— Ran a script to determine how many MPU regions exist in a block.

Figure: MPU Region Detection Script

30/34



MPU in QEMU5 Memory Protection Unit (MPU) Implementation

• Result Analysis
— The script returned 0x00000800.— Bit 0 (MPU Present Bit) = 0

◦ Some Cortex-M chips use this bit to indicate MPU presence.
◦ For Cortex-M7 (S32K3 series), this bit is always 0.— Bits 15:8 (DREGION) = 8
◦ MPU supports 8 regions.

Figure: MPU Detection Result

31/34



Table of Contents6 Conclusion

▶ Project Overview
▶ QEMU Board Emulation
▶ FreeRTOS Porting
▶ Test Application
▶Memory Protection Unit (MPU) Implementation
▶ Conclusion

32/34



Conclusion6 Conclusion

• The s32k3x8evb board.c file plays a crucial role in the emulation of the NXP
S32K3X8EVB board within QEMU.

• It provides the necessary functions to load firmware, initialize memory regions, setup hardware components, and manage system clocks and interrupts.
• All the implementations and detailed information about the project are contained inthe repository.
• Repository link: https://baltig.polito.it/caos2024/group2.git

33/34

https://baltig.polito.it/caos2024/group2.git


Thank you for listening!
Any questions?

34/34


	Project Overview
	QEMU Board Emulation
	FreeRTOS Porting
	Test Application
	Memory Protection Unit (MPU) Implementation
	Conclusion

