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This paper introduces a comprehensive machine learning approach to analyze SSH shell attack sessions, leveraging both
supervised and unsupervised learning techniques. Using a dataset of 230,000 unique Unix shell attack sessions, themethodology
aims to classify attacker tactics based on the MITRE ATT&CK framework and uncover latent patterns through clustering.
The key contributions of this work are:

• Development of a robust pre-processing pipeline to analyze temporal trends, extract numerical features, and evaluate
intent distributions from large-scale SSH attack session data.

• Implementation of supervised classification models to accurately predict multiple attacker tactics, supported by
hyperparameter tuning and feature engineering for enhanced performance.

• Application of unsupervised clustering techniques to uncover hidden patterns in attack behaviors, leveraging visualiza-
tion tools and cluster analysis for fine-grained categorization.

• Exploration of advanced language models, such as BERT or Doc2Vec, for representation learning and fine-tuning to
improve intent classification and session interpretation.
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1 INTRODUCTION

1.1 Motivation
Security logs play a crucial role in understanding and mitigating cyber attacks, particularly in the domain of
network and system security. With the increasing sophistication of cyber threats, analyzing and interpreting
security logs has become paramount for detecting, preventing, and responding to potential security breaches.
∗The authors collaborated closely in developing this project.
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Unix shell attacks, especially those executed through SSH protocol, represent a significant vector for potential
system compromises.
The complexity of security log analysis stems from several key challenges:

• Logs are often unstructured and contain ambiguous or malformed text.
• Manual parsing and interpretation of logs is time-consuming and error-prone.
• The sheer volume of log data makes comprehensive manual review impractical.

These challenges underscore the need for automated, intelligent approaches to log analysis that can efficiently
extract meaningful insights and identify potential security threats.

1.2 Objective
The primary objective of this research is to develop and evaluate machine learning techniques for automatic
analysis and classification of SSH shell attack logs. Specifically, we aim to:

• Automate the process of log analysis and intent classification.
• Provide security professionals with insights into attack strategies.
• Identify patterns and trends in attack sessions for proactive threat mitigation.

The significance of this research lies in its potential to enhance cybersecurity threat detection and response
capabilities by transforming complex, unstructured log data into actionable intelligence.

2 BACKGROUND

2.1 Security Logs and Attack Analysis
In the context of SSH shell attacks, logs document the sequence of commands executed during a malicious session,
enabling security researchers to analyze attacker behaviors, techniques, and potential system impacts. However,
due to the high quantity of logs generated by security systems, manual analysis is impractical, necessitating
automated approaches and valid Frameworks to extract meaningful insights.

2.2 MITRE ATT&CK Framework
The MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge) framework provides a compre-
hensive knowledge base of adversary tactics and techniques observed in real-world cyber attacks. This framework
serves as a standardized methodology for understanding and categorizing attack strategies.
For our research, we focus on seven key intents derived from the MITRE ATT&CK framework:

• Persistence: Methods adversaries use to keep access to a system after restarts or credential changes.
• Discovery:Methods for gathering information about the target system and network environment.
• Defense Evasion: Strategies to avoid detection by security mechanisms.
• Execution: Techniques for running malicious code on target systems.
• Impact: Actions aimed at manipulating, interrupting, or destroying systems and data.
• Other: Less common tactics including Reconnaissance, Resource Development, Initial Access, etc.
• Harmless: Non-malicious code or actions.

2.3 Research Approach
Our research employs a multi-faceted approach to this analysis:

• Explore and preprocess a large dataset of Unix shell attack sessions.
• Apply supervised learning techniques to classify attack tactics based on session characteristics.
• Utilize unsupervised learning methods to discover patterns and clusters in attack sessions.
• Investigate the potential of advanced language models in understanding and categorizing attack intents.
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3 DATA EXPLORATION AND PRE-PROCESSING

3.1 Introduction
This section outlines the steps taken to explore and preprocess the dataset used in this study. The primary
objective is to understand the data characteristics, identify patterns, and prepare the data for further analysis. We
focus on temporal trends, intent distributions, and textual features.

3.2 Dataset Overview
The dataset consists of logs from SSH attacks. Each entry includes the following features:

• session_id: An integer representing the unique identifier for each session.
• full_session: A string containing the full sequence of commands executed during the attack session.
• first_timestamp: The timestamp indicating the start of the session.
• Set_Fingerprint: A set of strings (labels) describing the nature of the attack.

Below is an example of the dataset structure:

Fig. 1. Dataset

3.3 Dataset Preparation and Feature Extraction
The dataset used in this study was provided as a Parquet file.
To prepare the dataset for analysis and ensure its quality, several preprocessing steps were undertaken, described
in detail below:
(1) Decoding the full_session column: The full_session column contained 90026 encoded shell scripts,

making the raw data difficult to interpret. A decoding process was applied to these entries, converting
them into a human-readable format.

(2) Formatting the first_timestamp column: The first_timestamp column was checked for consistency
and converted into a standard datetime format.

(3) Splitting the full_session column into lists of commands: The full_session column contained
entire attack sessions represented as single strings. Since we wanted each word / command to be a feature
of our models, it was necessary to break it down into individual commands or keywords for more granular
analysis. This was achieved through a multi-step splitting process using specific delimiters:
• The semicolon (;) was used to separate distinct commands within a session.
• The pipe (|) was used to divide concatenated commands or pipelines.
• Whitespace ( ) was used to further split commands into individual words or arguments.
This process allowed the identification of specific actions and parameters, facilitating a detailed analysis of
the attack strategies.
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(4) Cleaning individual commands: Each command or keyword extracted from the full_session column
was processed to remove unnecessary or undesired elements. Regular expressions were used to strip
unwanted symbols, and variable assignments.

(5) Handling missing values: To ensure the integrity and completeness of the dataset, a thorough check for
missing values was performed across all columns.

enable ; system ; shell ; sh ; cat /proc/mounts ; /bin/busybox SAEMW ; cd /dev/

shm ; cat .s || cp /bin/echo .s ; /bin/busybox SAEMW ; tftp ; wget ; /bin/

busybox SAEMW ; dd bs=52 count=1 if=.s || cat .s || while read i ; do echo

$i ; done < .s ; /bin/busybox SAEMW ; rm .s ; exit ;

[enable , system , shell , sh, cat , /proc/mounts , /bin/busybox , SAEMW , cd, /dev/shm

, cat , .s, cp, /bin/echo , .s, /bin/busybox , SAEMW , tftp , wget , /bin/busybox

, SAEMW , dd, bs, count , if, cat , .s, while , read , i, do, echo , i, done , .s,

/bin/busybox , SAEMW , rm, .s, exit]

Listing 1. Dataset Processing

These preprocessing steps ensured that the dataset was well-structured, clean, standardized and ready for
advanced analysis and machine learning tasks. By addressing issues such as encoding, formatting, and missing
data, the preprocessing phase established a robust foundation for the study.

3.4 Temporal Analysis
The temporal analysis examines when the attacks were performed and the intent distribution over time.

Fig. 2. Temporal Series of SSH Attacks Fig. 3. Attacks by the day of the week

Our dataset spans from June 2019 to March 2020, revealing a notable concentration of attacks between mid-
October 2019 and January 2020. Further analysis was conducted on the distribution of sessions across various
temporal dimensions (months, days of the week, etc.), but no significant patterns were identified.
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3.5 Common Words Analysis
The analysis of common words within the attack sessions provides insights into frequently utilized commands
and keywords. These elements are pivotal for understanding attacker behavior and informing model training for
detecting attack intents.
To visualize and analyze the most frequent words, two approaches were used:
• Word Cloud Visualization: A word cloud (Figure 4) was generated to represent the most common words
in the dataset. Commands like grep , cat , echo , and rm dominate the word cloud, highlighting their
frequent usage in attack sessions.

• Top 20 Most Common Words Bar Plot: A bar plot (Figure 5) showcases the top 20 most frequent words,
ordered by their frequency. This plot provides more quantitative detail, revealing the high occurrence
of commands such as grep (over 1.2 million occurrences) and cat (over 1 million occurrences). Other
significant commands include echo , rm , uname , and name . These commands are commonly associated
with file manipulation, string searching, and process information, which are typical in malicious activities.

The combination of these visualizations supports the identification of commonly used commands and their
potential roles in attack sessions.

Fig. 4. Word Cloud of Most Common Words Fig. 5. Top 20 Most Common Words

3.6 Intent Analysis
This section presents an analysis of different intents identified in attack sessions and their relationships. Our
analysis reveals distinct patterns in both the frequency of individual intents and their co-occurrence relationships,
providing valuable insights into attacker behavior patterns.
Figure 6 illustrates the frequency distribution of different intents in our dataset. The analysis reveals that

Discovery and Persistence are the most prevalent intents, with approximately 200,000 occurrences each. This
suggests that attackers primarily focus on reconnaissance activities and establishing long-term presence in the
targeted systems. Execution intent appears as the thirdmost common,with roughly 100,000 occurrences, indicating
a significant number of attempts to run malicious code. Defense Evasion shows notably fewer occurrences (around
20,000), while Harmless, Other, and Impact intents are relatively rare in the dataset.
The co-occurrence heatmap (Figure 7) reveals significant patterns in how different intents interact within

attack sessions. Several key observations emerge:
• The strongest co-occurrence relationship exists between Discovery and Persistence (211,281 co-occurrences),
suggesting that attackers often combine reconnaissance activities with attempts to maintain system access.
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• Execution shows strong correlations with both Discovery (92,279) and Persistence (91,576), indicating that
malicious code execution frequently accompanies both system discovery and persistence establishment
attempts.

• Defense Evasion exhibits moderate co-occurrence with Discovery (18,825) and minimal correlation with
other intents, suggesting that evasion techniques are primarily employed during reconnaissance phases.

• Harmless, Impact, and Other intents show minimal co-occurrence with other categories (with values mostly
under 20 co-occurrences). This isolation pattern is partially explained by their low frequency in the dataset:
Harmless with 2,206 occurrences, Impact with only 27 occurrences, and Other with 327 occurrences. These
numbers represent a small fraction of the total recorded intents, naturally limiting their potential for
co-occurrence with other intent types.

Fig. 6. Occurrences of each Intent Fig. 7. Co-Occurrence Heatmap of Intents

These findings highlight common attack patterns where adversaries typically begin with discovery operations,
followed by persistence establishment and execution of malicious code. This understanding can inform the
development of detection strategies and defensive measures, particularly focusing on the most common intent
combinations.

3.7 Session Analysis
The session analysis aims to understand the structural characteristics of the attack sessions in the dataset. This is
accomplished through two visualizations: the Empirical Cumulative Distribution Function (ECDF) plots and the
distribution of the number of words per session. The ECDF plots in Figure 8 provide insights into the distribution
of the number of characters and words across all sessions.

• The ECDF for characters indicates that the majority of sessions have fewer than 103 characters, with a sharp
increase between 102 and 103 characters. This suggests a high concentration of relatively short sessions.

• The ECDF for words shows a similar trend, with most sessions containing fewer than 102 words. The
distribution reflects the concise nature of many attack sessions, potentially focusing on executing a limited
number of commands.
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Fig. 8. ECDF for Characters and Words in Sessions Fig. 9. Distribution of the Number of Words per Session

Figure 9 illustrates the density distribution of the number of words per session. Key observations include:
• The distribution is bimodal, with two distinct peaks. This likely reflects different categories of sessions,
such as exploratory attacks with a larger number of commands versus simpler, targeted attacks with fewer
commands.

• The majority of sessions have fewer than 100 words, reinforcing the compactness observed in the ECDF
plots.

• Outliers with higher word counts likely represent complex sessions, potentially involving multiple stages
or more sophisticated attack strategies.

The relevance of these plots lies in their ability to provide a foundational understanding of session structure,
which is critical for feature engineering and model development. Shorter sessions may correspond to quick,
automated attacks, while longer sessions might represent manual or multi-step intrusions. These insights can
inform the design of models by emphasizing features tailored to the varying lengths and complexities of sessions,
ultimately improving detection accuracy.

3.8 Text Representation
To enable further analysis of the dataset, the initial textual data was transformed into numerical representations.
This step is essential for applying machine learning techniques, as numerical formats are required for model
training and evaluation. Two widely used text representation techniques were employed:

• Bag ofWords (BoW): This technique represents each session as a vector where each dimension corresponds
to a specific word, and the value represents the frequency of that word in the session. While simple and
interpretable, BoW does not capture the importance or uniqueness of words across the dataset.

• Term Frequency-Inverse Document Frequency (TF-IDF): This method extends BoW by weighting
the word frequencies based on their inverse document frequency, thereby emphasizing words that are
important within a session but less frequent across all sessions. This approach helps us, through the
"min_df" parameter to remove from the initial dataset, the words that have a very low frequency. In our
case, we set the "min_df" parameter to 0.01, which means that words that appear in less than 1% of the
sessions are removed. In this way the features are reduced from 300.000 to 90.

Figure 10 and Figure 11 illustrate the transformed datasets using the BoW and TF-IDF techniques, respectively.
The TF-IDF representation was chosen for further analysis as it captures meaningful patterns by emphasizing
word relevance, ensuring that subsequent analyses focus on the most distinctive features of each session, thereby
enhancing the effectiveness of machine learning models in identifying patterns and predicting intents.
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Fig. 10. Bag-of-Words

Fig. 11. TF-IDF

4 SUPERVISED LEARNING - CLASSIFICATION

4.1 Introduction
The supervised learning experiment in this project aimed to classify attack sessions into various intent categories
derived from the Set_Fingerprint column of the dataset. This section explores the use of Random Forest
and Support Vector Machines (SVM) as the primary models. The analysis focuses on how these models handle
multi-label classification and evaluates their performance using metrics such as weighted F1-scores and confusion
matrices.
This section outlines the model training and evaluation processes, and a detailed discussion of the results

obtained. Each model’s strengths and weaknesses are analyzed, providing insights into their application to
multi-label classification problems.

4.2 Data Preprocessing
To effectively apply supervised learning models, it is crucial to represent the textual data in a numerical format.
Raw text cannot be directly processed by most machine learning algorithms, so as we said in the previous section,
we transformed the dataset into a structured numerical form.

Unlike BoW, which merely counts word occurrences without differentiating their relevance, TF-IDF down-
weights frequently occurring words that may not carry significant information (e.g., common command-line
syntax) and upweights rare but potentially more meaningful terms. This property helps improve the model’s
ability to differentiate between different types of attacks and intents.
To prepare the data for supervised learning:

(1) Encoding Intents:After loading the TF-IDF dataset, the Set_Fingerprint column was encoded into
multi-label binary format using the MultiLabelBinarizer. Each intent was represented as a binary vector,
allowing for simultaneous prediction of multiple labels.

(2) Splitting the Data: The dataset was divided into training (70%) and testing (30%) subsets. No stratified split-
ting was used, as some classes had only a single label, and it was important to preserve their representation
in the subsets.

These steps ensured the dataset was clean and ready for supervised learning.
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4.3 Model Training
Three models were trained and evaluated using their default configurations to establish baseline performance:

1. Random Forest
The Random Forest model was trained with default parameters, including 100 estimators and unlimited maximum
depth. This initial training provided insights into potential overfitting or underfitting issues and served as a
benchmark for subsequent tuning.

2. Support Vector Machines (SVM)
SVM was initially trained with default settings using a linear kernel and a regularization parameter 𝐶 = 1. The
performance was evaluated to assess the model’s ability to handle multi-label classification tasks with linearly
separable data.

3. Logistic Regression
In order to have another view of the analysis, we performed the training with the logistic regression model.
While the model performed well, the results were not as significant as those of RF and SVM, so they will not be
discussed in detail in this section (see Appendix).

4.4 Evaluation Metrics
The models were evaluated using the following metrics:

• Accuracy, Precision, Recall: Basic evaluation metrics.
• Confusion Matrices: Provided insight into TP, FP, FN, and TN for each intent.
• Weighted F1-Scores: Measured the harmonic mean of precision and recall, with weights proportional to
class support.

This evaluation allowed for the identification of baseline performance, highlighting potential areas for im-
provement through hyperparameter tuning.

4.5 Hyperparameter Tuning
To optimize each model, hyperparameter tuning was performed using a grid search approach. This process aimed
to improve performance and address issues of overfitting or underfitting observed in the baseline models:

1. Random Forest
The grid search explored combinations of the number of estimators (50, 100, and 150) and maximum depth (10,
50, and 100). The best-performing configuration was selected based on weighted F1-scores.

2. Support Vector Machines (SVM)
For SVM, the grid search varied the regularization parameter 𝐶 (0.1, 1, 10, 100) and the kernel type (linear and
RBF). Additional tuning for the RBF kernel included the gamma parameter (scale and auto).

4.6 Results and Observations
Performance Overview with Base Models
Both the Random Forest and SVMmodels exhibited high classification performance across most attack categories.
On the test set, both models achieved similar overall metrics: a weighted precision of 0.999, recall of 0.994, and
F1-score of 0.996 for Random Forest and 0.995 for SVM. The confusion matrices (Figures 12 and 17) reveal that
both models performed well for major attack types such as Defense Evasion, Execution, and Persistence, but
struggled with the Impact category. These results suggest that the dataset structure allowed both models to
classify well-represented categories effectively while facing difficulties with underrepresented ones.
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Fig. 12. Random Forest Confusion Matrices

Fig. 13. Random Forest Evaluation Metrics Fig. 14. Random Forest Weighted F1 Scores

Fig. 15. Random Forest Classification Report Train Set Fig. 16. Random Forest Classification Report Test Set
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Fig. 17. SVM Confusion Matrices

Fig. 18. SVM Evaluation Metrics Fig. 19. SVM Weighted F1 Scores

Fig. 20. SVM Classification Report Train Set Fig. 21. SVM Classification Report Test Set
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Hyperparameter Analysis
Hyperparameter tuning led to minimal improvements for both models. The best configuration for Random Forest
included a max depth of 50, min samples per leaf of 1, min samples per split of 5, and 50 estimators, resulting in a
cross-validation score of 0.9955 (Figure 14). Similarly, SVM achieved its optimal performance with 𝐶 = 100, an
RBF kernel, and gamma set to ’scale’, leading to a cross-validation score of 0.9954 (Figure 19).

Post-tuning, both models exhibited slightly improved confidence in predictions, but the challenges in classifying
minority classes remained largely unchanged.

Comparative Analysis of Baseline and Optimized Models
The optimized models provided only marginal improvements over their respective baselines. Random Forest
experienced a 1.50% increase in weighted F1-score, while SVM improved from 0.9821 to 0.9966, reflecting a
1.48% gain. Probability density distributions (see Appendix) indicate that both models produced more confident
predictions, reducing false positives and false negatives. However, the Impact category continued to pose
classification difficulties, highlighting the persistent issue of class imbalance.

4.7 Conclusion
Both Random Forest and SVM demonstrated strong performance in this supervised learning task, with highly
comparable results. Random Forest offered slightly better overall generalization across attack categories, while
SVM required more fine-tuning to achieve similar performance.

4.7.1 Comparative Model Analysis
Key insights from the comparative analysis are as follows:

• Both models exhibited nearly identical classification performance between base and tuned versions.
• Both models offers similar performances, but Random Forest showed a better generalization.
• Both models struggled with the Impact category due to dataset imbalance.

These findings indicate that the choice between Random Forest and SVM should be guided by specific security
application needs rather than raw performance metrics, as their results are largely equivalent. Future work should
focus on handling class imbalance and incorporating alternative methods to improve rare attack classification.

5 UNSUPERVISED LEARNING - CLUSTERING

5.1 Introduction
Unsupervised learning, a powerful branch of machine learning, was applied in this project to gain insights from
SSH attack data. The primary focus was on leveraging clustering methods to group similar attack sessions based
on their intrinsic patterns and characteristics. By analyzing these groups, the study aimed to uncover hidden
relationships and categorize different attack intents and behaviors without relying on predefined labels.

5.2 Data Preparation
The dataset chosen was the one generated through the TF-IDF vectorization technique. This was made because it
was essential to start with a dataset that represented in the best way the frequency and the importance of words,
making each word as a dimension of our vector.

5.3 Clustering Methods
Clustering techniques were employed to uncover natural groupings within the dataset, providing insights into
SSH attack patterns. The following methods were used:
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• K-Means Clustering: The Elbow Method was applied to determine the optimal number of clusters by
examining the total within-cluster sum of squares (inertia). Silhouette scores were also calculated to evaluate
the cohesion and separation of clusters.

• Gaussian Mixture Model (GMM): Unlike K-Means, GMM considers the probability of each data point
belonging to a cluster, providing a more flexible and nuanced clustering approach. The optimal number of
clusters was determined using a combination of log-likelihood scores, which measure how well the model
fits the data, and silhouette analysis to validate cluster quality.

5.4 Clustering Evaluation Techniques

5.4.1 K-Means Clustering
The Elbow Method graph (Figure 22) shows a steep decline in clustering error between 3 and 6 clusters, followed
by a more gradual decrease as the number of clusters increases. The point of inflection, or "elbow," appears
around 6 clusters, suggesting that adding more clusters beyond this point results in diminishing improvements in
minimizing intra-cluster variance. The Silhouette Score graph exhibits a rapid increase up to 5 clusters, reaching
a stable high value of approximately 0.95. A drop is observed around 8 clusters, after which the score gradually
increases again, peaking beyond 12 clusters. Considering both metrics, the optimal number of clusters for K-Means
is likely between 5 and 6, ensuring a trade-off between clustering accuracy and computational efficiency.

5.4.2 Gaussian Mixture Model (GMM)
The Silhouette Score graph shows a sharp increase up to 5 clusters, reaching a stable high value around 0.95. A
slight drop is observed at 8 clusters, followed by a steady increase, with the highest scores occurring beyond
12 clusters. This suggests that increasing the number of clusters generally improves separation and cohesion,
though the optimal balance appears to be around 6 clusters, where the highest stable performance is first achieved.
The Log-Likelihood Score graph indicates a rapid increase from 3 to 5 clusters, after which the improvements
become more gradual. Beyond 12 clusters, the score stabilizes, indicating diminishing returns in model fitting.
Considering both metrics, an optimal cluster configuration is likely between 6 and 8 clusters, balancing cluster
separation, model likelihood, and computational efficiency.

Fig. 22. K-means Elbow Method Fig. 23. K-means Silhouette Score
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Fig. 24. GMM Log-Likelihood Score
Fig. 25. GMM Silhouette Score

5.5 Hyperparameter Tuning
To optimize both the K-Means and Gaussian Mixture Model (GMM) clustering approaches, hyperparameter
tuning was performed using grid search with cross-validation. For K-Means clustering, the optimal parameters
identified were:

Initialization method Number of initializations (n_init) Maximum iterations (max_iter)
k-means++ 10 50

The final clustering results achieved a silhouette score of 0.9490 and an inertia value of 1708.96. The high
silhouette score indicates well-defined and well-separated clusters, while the minimized inertia suggests an
efficient clustering structure. For the Gaussian Mixture Model (GMM), the best hyperparameters found were:

Covariance Type Initialization method Maximum iterations (max_iter) Tolerance (tol)
full k-means 50 0.001

The model’s performance was evaluated using a silhouette score of 0.9398 and a log-likelihood score of 508.71.
Both clustering techniques provided effective segmentation of the dataset. K-Means exhibited a slightly higher
silhouette score, suggesting better-defined cluster boundaries, while GMM’s higher log-likelihood highlights its
ability to model complex, overlapping clusters.

5.6 Clusters Visualization
To better understand the structure of the clusters, t-SNE dimensionality reduction was applied. While t-SNE is
effective for visualizing high-dimensional data, its interpretation must align with clustering validation metrics.

5.6.1 K-Means Visualization
The t-SNE visualization of the K-Means clustering results shows a significant imbalance in cluster distribution.
A dominant cluster (red) occupies the majority of the data points, indicating that the clustering algorithm has
struggled to separate distinct groups effectively. In contrast, a well-defined smaller cluster (blue) appears near the
center of the visualization, indicating a group of data points with distinct characteristics. A few minor clusters
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Fig. 26. t-SNE Visualization of K-Means Clusters Fig. 27. t-SNE Visualization of GMM Clusters

(yellow, green, and purple) are sparsely distributed across the visualization. Overall, the presence of a dominant
cluster and the scattered nature of the smaller ones indicate that the method struggles to separate attacks into
distinct behavioral groups.

5.6.2 GMM Visualization
A notable difference compared to K-Means is the slightly better-defined separation of some clusters. The yellow
and green clusters appear more distinct in the center and upper-left region of the plot, suggesting that GMM
may have identified subtle variations in the data. However, a large fraction of the points remains assigned to
the dominant cluster, indicating that the separation is still suboptimal. While GMM provides a more flexible
clustering approach, the results still indicate significant overlap between attack behaviors. The presence of one
overwhelmingly dominant cluster suggests that the feature space may not provide enough variance for effective
clustering, highlighting potential limitations in the data representation or the model selection process.

5.7 Clusters Analysis

5.7.1 Word Cloud Representation
The word clouds provide an overview of the most frequently occurring terms within each cluster generated by
the Gaussian Mixture Model (GMM).

• Cluster 0: Contains generic system-related terms like grep , var , and tmp , which appear across multiple
clusters, reducing its distinctiveness.

• Cluster 2: Features busybox , bin , and mounts , commonly linked to IoT-based attacks, indicating a
possible focus on embedded systems.

• Cluster 3: Includes x19 , unix , and ssh , suggesting system administration tasks or privilege escalation
attempts.

• Cluster 4: Highlights grep , proc , and ls , often used for system exploration and enumeration, but
lacks strong differentiation.

• Cluster 5: Contains chmod , wget , and ssh , indicating file modification, remote downloads, and SSH
access, possibly related to persistence techniques.

Overall, the word clouds provide some insight into common command usage within each cluster, but the
significant term repetition across multiple clusters suggests that the clustering approach may not have achieved
strong separability. This indicates that additional feature engineering or alternative clustering techniques may be
necessary to improve attack categorization.
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Fig. 28. Word Clouds for Each Cluster

5.7.2 Community Detection
Graph-based community detection was applied to further segment clusters into subgroups. The results indicate
that specific communities focus on distinct attack behaviors:

• The K-Means-based community detection identified well-defined subgroups, but many commands appear
across multiple communities, indicating overlapping behaviors.

• The GMM-based community detection aligns with K-Means results, with some additional flexibility in
capturing transitional attack patterns. However, the persistence of a dominant cluster in both methods
suggests that neither approach fully separates attacks into meaningful, non-overlapping categories.

Overall, while community detection adds another layer of granularity, the results indicate that SSH attack
behaviors exhibit significant overlap, making strict segmentation challenging. Additional analysis of the single
communities in the appendix. Instead, the overlap in dominant terms suggests that the clustering process may
have captured broader system interaction behaviors rather than distinct categories of SSH attack tactics.

Fig. 29. Community Detection in Cluster 0 (K-Means). Fig. 30. Community Detection in Cluster 0 (GMM).

5.8 Conclusion
This analysis provided insights into SSH attack patterns through clustering, using both K-Means and GMM.While
validation metrics and hyperparameter tuning optimized the models, the visualized results indicate significant
overlap between clusters, suggesting challenges in achieving well-separated attack groupings. The presence
of dominant clusters encompassing much of the dataset hints at either insufficient feature discrimination or
limitations in the chosen clustering techniques. Despite these challenges, the study demonstrates the potential
of unsupervised learning in revealing underlying structures in SSH attack data, forming a basis for further
refinement in cybersecurity threat detection.
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6 LANGUAGE MODEL EXPLORATION

6.1 Introduction
This section documents the steps taken to fine-tune a pre-trained BERT model for multi-label classification. The
focus was on customizing the final classification layer and training the model on the Set_Fingerprint intents.
Performance metrics and visualizations are presented to evaluate the effectiveness of the model.

6.2 Data Preprocessing
The dataset was processed as follows:

• The full_session column, which contains lists of words, was filtered to retain only words that appeared
at least in 1% of all the sessions. This step reduced the vocabulary to frequent words only.

• The Set_Fingerprint columnwas preprocessed formulti-label encoding using the MultiLabelBinarizer
class, enabling the representation of intents as binary vectors.

• The dataset was split into 60% training, 20% validation, and 20% testing sets.

6.3 Tokenization
The tokenization process is a critical step in preparing text data for input into a BERT model. We utilized the
pre-trained BERT tokenizer, specifically designed for the bert-base-uncased model, to convert our text data
into input IDs and attention masks. Using the pre-trained tokenizer ensures consistency with BERT’s pre-training,
maintaining representation integrity and optimizing model performance. These strategies enhance efficiency,
compatibility, and overall performance in the text processing pipeline.

6.4 Model Architecture

A pre-trained bert-base-uncased model was used, with a custom linear classification head added to predict
the intents. The classifier had an input size of 768 (BERT’s hidden layer dimensions) and an output size equal to
the number of intents. The model architecture is as follows:

• CustomBERTModel : A custom model class that inherits from torch.nn.Module .
• BertModel : The pre-trained BERT model.
• classifier : A dense layer with a sigmoid activation function that maps the BERT output to the number
of intents.

The choice of a dense layer with sigmoid activation is motivated by the multi-label nature of our classification
task. In multi-label classification, each instance can be associated with multiple labels simultaneously. The sigmoid
activation allows each output neuron to independently predict the probability of its corresponding intent being
present, which is essential for handling non-mutually exclusive labels.

6.5 Training Process

• The model was trained using the AdamW optimizer with a learning rate of 4 × 10−5, betas of (0.9, 0.98),
and an epsilon of 1 × 10−6.

• A linear learning rate scheduler was used with no warmup steps and a total of (8739 batches * 10) steps.
• The BCEWithLogitsLoss loss function was applied for multi-label classification.
• The model was fine-tuned for 4 epochs, with a batch size of 16. Specifically, only the last layer (the custom
classification head) was trained, while the pre-trained BERT layers were kept frozen.
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6.6 Evaluation Metrics
• Metrics included precision, recall, F1-score, and ROC-AUC for each intent class.
• ROC curves were generated for each class to visualize the trade-off between TP rate and FP rate.
• Training and validation loss curves were plotted to monitor the model’s learning progress over epochs.

6.7 Results

6.7.1 Training and Validation Loss
The training and validation loss curves shown in Figure 31 indicate a consistent decrease in both losses over
the epochs, suggesting that the model is learning effectively. The training loss and validation loss both trend
downwards, with no significant signs of overfitting, as the validation loss does not increase while the training
loss decreases. This convergence implies that the model generalizes well to the validation data.
However, it is important to note that while the losses show a consistent decrease, we do not know for how

much longer this trend could continue. The optimal number of epochs remains unclear, as we stopped training
after 4 epochs due to resource constraints. Further experimentation with additional epochs could provide deeper
insights into the model’s learning dynamics and potentially improve performance.

Fig. 31. Training and Validation Loss Fig. 32. ROC Curves for Each Class

6.7.2 ROC Curves
The ROC curves for each class, as depicted in Figure 32, show excellent performance for most classes, with AUC
values close to 1.00 for Defense Evasion, Discovery, Execution, Other, and Persistence. Notably, the Harmless
class has a lower AUC of 0.78, indicating potential difficulties in distinguishing this class from others. This could
suggest class imbalance or other challenges specific to identifying harmless intents.

6.7.3 Test Metrics
The model achieved the following high weighted metrics on the test set:

Precision Recall F1-Score ROC-AUC
0.9974 0.9927 0.9937 0.9971

These weighted metrics indicate superior performance, capturing most positive cases accurately while ac-
counting for class imbalance.
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6.8 Conclusion
The BERT-based model demonstrated exceptional performance in classifying SSH attack sessions into MITRE
ATT&CK tactics, achieving high precision, recall, F1-score, and ROC-AUC values. Notably, the model excelled
in identifying malicious intents, as evidenced by the high AUC values for classes such as Defense Evasion and
Persistence. However, the "Harmless" class presented challenges, indicating potential issues with class imbalance
and feature representation.

Several factors contribute to these findings. The limited number of examples for harmless activities may have
hindered the model’s ability to learn distinguishing features effectively. Future research could explore fine-tuning
more layers of the BERT model to enhance performance, or adding more instances and sessions of the lesser
classes, making the dataset more balanced. Additionally, feature engineering and exploring different architectures
could improve the model’s discriminative power.
In summary, this study contributes to the field by successfully applying a BERT-based model to classify SSH

attack sessions, achieving high performance, and identifying areas for improvement. The insights gained suggest
promising directions for enhancing the model’s capabilities in distinguishing harmful from harmless intents,
thereby advancing cybersecurity defenses.

7 CONCLUSION

7.1 Summary of Key Findings
In this project, we explored various techniques for analyzing and classifying SSH shell attack logs. The primary
objectives were to preprocess the data, perform exploratory data analysis, implement supervised and unsupervised
learning models, and leverage advanced language models for classification tasks. Here, we summarize the key
findings from each section of the project.

Data Exploration and Pre-processing: We began by loading and inspecting the dataset, identifying missing
values, and handling duplicates. Temporal analysis revealed significant variations in attack frequencies over time,
with notable peaks during specific hours and months. Feature extraction and common words analysis provided
insights into the most frequent commands and intents used in the attack sessions.
Supervised Learning - Classification:We implemented and evaluated several machine learning models,

including Logistic Regression, Random Forest, and Support Vector Machine (SVM). Hyperparameter tuning have
not improved significantly the performance of these models, and the result analysis highlighted the strengths
and weaknesses of each approach.

Unsupervised Learning - Clustering: Clustering techniques, such as K-Means and Gaussian Mixture Models
(GMM), were used to group similar attack sessions. The elbow method and silhouette analysis helped determine
the optimal number of clusters. Cluster visualization using t-SNE technique has not provided a clear distincion
among the clusters. This could prove that the chosen unsupervised learning models are not suitable for this type
of dataset.
Language Model Exploration: We explored the use of advanced language models, such as BERT, for

classifying attack session tactics. Fine-tuning the pretrained BERT model on our dataset improved classification
performance. Learning curves indicated the optimal number of epochs for training, helping to avoid overfitting.

By comparing different types of machine learning techniques and their results, we can understand that, for
the applied dataset, a classification methodology based on semantics and LLM can yield more significant results
compared to analyzing the same data using basic machine learning technique(unsupervised learning basic
classification).
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7.2 Challenges Faced
Throughout the project, we encountered several challenges that required careful consideration and problem-
solving.

Data Quality and Preprocessing: Handling missing values, duplicates, and inconsistencies in the dataset was
a critical step. Ensuring the data was clean and well-prepared for analysis required significant effort. Additionally,
the unstructured nature of the session text posed challenges for text representation and feature extraction.
Model Selection and Tuning: Selecting appropriate machine learning models and tuning their hyperpa-

rameters was a complex task. Balancing model complexity with performance and avoiding overfitting required
iterative experimentation and validation.

Computational Resources: Training advanced language models, such as BERT, required substantial compu-
tational resources. Efficiently managing these resources and optimizing the training process was essential to
achieve timely results.

Interpretability of Results: Interpreting the results of clustering and classification models, especially in the
context of cybersecurity, was challenging. Ensuring that the findings were meaningful and actionable required
careful analysis and domain knowledge.

7.3 Future Work
Based on the findings and challenges encountered in this project, we propose several directions for future work.

Enhanced Feature Engineering: Further exploration of feature engineering techniques, such as incorporating
domain-specific knowledge and using advanced text representation methods, could improve model performance.
Experimenting with additional features, such as network metadata and contextual information, may provide
deeper insights into attack patterns.

Advanced Model Architectures: Exploring more advanced model architectures, such as transformer-based
models and deep neural networks, could enhance classification accuracy. Transfer learning with other pretrained
models and ensemble methods may also yield better results.
Real-time Analysis and Detection: Implementing real-time analysis and detection systems for SSH shell

attacks could provide immediate insights and responses to potential threats. Integrating the models developed in
this project into a real-time monitoring framework would be a valuable extension.
Broader Dataset and Generalization: Expanding the dataset to include a wider range of attack types and

sources would improve the generalizability of the models. Collaborating with other organizations to share data
and insights could enhance the robustness and applicability of the findings.

7.4 Conclusion
This project demonstrated the potential of machine learning and advanced language models for analyzing and
classifying SSH shell attack logs. By leveraging various techniques, we gained valuable insights into attack
patterns and behaviors, which can inform cybersecurity strategies and defenses. Despite the challenges faced,
the results highlight the importance of data-driven approaches in enhancing cybersecurity threat detection and
response capabilities. Future work in this area holds promise for further advancements and practical applications
in the field of cybersecurity.
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